Generalized Metric Spaces: Completion, Topology, and Powerdomains via the Yoneda Embedding
نویسندگان
چکیده
Generalized metric spaces are a common generalization of preorders and ordinary metric spaces (Lawvere, 1973). Combining Lawvere’s (1973) enriched-categorical and Smyth’s (1988, 1991) topological view on generalized metric spaces, it is shown how to construct (1) completion, (2) two topologies, and (3) powerdomains for generalized metric spaces. Restricted to the special cases of preorders and ordinary metric spaces, these constructions yield, respectively: (1) chain completion and Cauchy completion; (2) the Alexandroff and the Scott topology, and the s-ball topology; (3) lower, upper, and convex powerdomains, and the hyperspace of compact subsets. All constructions are formulated in terms of (a metric version of) the Yoneda (1954) embedding.
منابع مشابه
Generalized ultrametric spaces : completion , topology , and powerdomains via the Yoneda embedding
Generalized ultrametric spaces are a common generalization of preorders and ordinary ultrametric spaces (Lawvere 1973, Rutten 1995). Combining Lawvere's (1973) enriched-categorical and Smyth' (1987, 1991) topological view on generalized (ultra)metric spaces, it is shown how to construct 1. completion, 2. topology, and 3. powerdomains for generalized ultrametric spaces. Restricted to the special...
متن کاملCs - R 9636 1996
Generalized metric spaces are a common generalization of preorders and ordinary metric spaces (Lawvere 1973). Combining Lawvere's (1973) enriched-categorical and Smyth' (1988, 1991) topological view on generalized metric spaces, it is shown how to construct 1. completion , 2. topology, and 3. powerdomains for generalized metric spaces. Restricted to the special cases of preorders and ordinary m...
متن کاملAlexandro and Scott Topologies for Generalized Metric Spaces
Generalized metric spaces are a common generalization of preorders and ordinary metric spaces. Every generalized metric space can be isometrically embedded in a complete function space by means of a metric version of the categorical Yoneda embedding. This simple fact gives naturally rise to: 1. a topology for generalized metric spaces which for arbitrary preorders corresponds to the Alexandroo ...
متن کاملOn Generalized Injective Spaces in Generalized Topologies
In this paper, we first present a new type of the concept of open sets by expressing some properties of arbitrary mappings on a power set. With the generalization of the closure spaces in categorical topology, we introduce the generalized topological spaces and the concept of generalized continuity and become familiar with weak and strong structures for generalized topological spaces. Then, int...
متن کاملOn the Completion Monad via the Yoneda Embedding in Quasi-uniform Spaces
Making use of the presentation of quasi-uniform spaces as generalised enriched categories, and employing in particular the calculus of modules, we define the Yoneda embedding, prove a (weak) Yoneda Lemma, and apply them to describe the Cauchy completion monad for quasi-uniform spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 193 شماره
صفحات -
تاریخ انتشار 1998